Artificial intelligence and data governance in public administration: reflections and evidence for its development

Authors

DOI:

https://doi.org/10.24965/gapp.i26.10855

Keywords:

Artificial Intelligence, Data Governance, Public Administration

Abstract

The development and integration of Artificial Intelligence (AI) at a transversal level in public sector organizations, transcending specific initiatives of a sectoral nature, requires new capabilities. The review of different approaches that address this issue highlights the importance of data and, more specifically, its governance in public administrations. To delve into this, the different dimensions of data governance are analyzed and five components are identified for its development: strategy, data architecture and infrastructure, organization (including structure and processes), talent and professionals’ competencies’ management and the organization’s relationship model with its environment. Through conceptual reflection and its application to a case study of the Barcelona City Council, with contributions to the different components, we can highlight learnings and formulate proposals for each of them. The conclusions address the need for an integrated institutional strengthening strategy that relates the different components of data governance linked to the development of Artificial Intelligence in the public sector.

Downloads

Download data is not yet available.

Author Biography

Miquel Salvador Serna, Universitat Pompeu Fabra (España)

Profesor titular del Departamento de Ciencias Políticas y Sociales de la Universidad Pompeu Fabra, Doctor en Ciencia Política y de la Administración y Máster en Teoría Política y Social por la Universidad Pompeu Fabra, Licenciado en Ciencias Políticas y Sociología y Máster en Gestión Pública por la Universidad Autònoma de Barcelona. Ha realizado estancias de investigación en el Interdisciplinary Institute of Management de la London School of Economics and Political Science y ha sido Jean Monnet Fellow en el European University Institute de la Unión Europea en Florencia. Su actividad de docencia e investigación se centra en los ámbitos de gestión de recursos humanos, capacidades institucionales, análisis y evaluación de políticas públicas, y en los procesos de transformación digital de las organizaciones públicas. Los resultados de su actividad: https://producciocientifica.upf.edu/CawDOS?id=84701d79f5a7517b&idioma=es&tipo=activ.

References

Acuto, M., Steenmans, K., Iwaszuk, E. y Ortega-Garza, L. (2018). Informing urban governance? Boundary-spanning organisations and the ecosystem of urban data. Area, 51, 94-103. https://doi.org/10.1111/area.12430

Allam, Z. y Dhunny, Z. A. (2019). On big data, artificial intelligence and smart cities. Cities, 89, 80-91. https://doi.org/10.1016/j.cities.2019.01.032

Begg, C. y Caira, T. (2012). Exploring the SME Quandary: Data Governance in Practise in the Small to Medium-Sized Enterprise Sector. Electronic Journal of Information Systems Evaluation, 15(1), 3-13.

Nielsen, O. B., Persson, J. S. y Madsen, S. (2019). Why Governing Data Is Difficult: Findings from Danish Local Government. En A. Elbanna, Y. Dwivedi, D. Bunker y D. Wastell (eds.). Smart Working, Living and Organising. TDIT 2018. IFIP Advances in Information and Communication Technology (vol. 533). Springer. https://doi.org/10.1007/978-3-030-04315-5_2

Blanco, I., Salazar, Y. y Bianchi, I. (2019). Urban governance and political change under a radical left government: The case of Barcelona. Journal of Urban Affairs, 42(1), 18-38. https://doi.org/10.1080/07352166.2018.1559648

Castro, D. y New, J. (10 de octubre de 2016). The promise of artificial intelligence. Center for Data Innovation. Consultado el 4 de agosto de 2020. https://www.datainnovation.org/2016/10/the-promise-of-artificial-intelligence/

Christodoulou, P., Decker, S., Douka, A. V., Komopoulou, C., Peristeras, V., Sgagia, S., Tsarapatsanis, V. y Vardouniotis, D. (2018). Data Makes the Public Sector Go Round. En P. Parycek, O. Glassey, M. Janssen, H. J. Scholl, E. Tambouris, E. Kalampokis, S. Virkar (eds.). Electronic Government. EGOV 2018. Lecture Notes in Computer Science (vol. 11.020). Springer. https://doi.org/10.1007/978-3-319-98690-6_19

Creswell, J. W. (2018). Qualitative inquiry and research design: choosing among five approaches. SAGE. https://doi.org/10.1177/1524839915580941

Desouza, K. C. (2018). Delivering Artificial Intelligence in Government: Challenges and Opportunities. IBM Center for the Business of Government. Consultado el 4 de agosto de 2020. http://www.businessofgovernment.org/report/delivering-artificial-intelligence-government-challenges-and-opportunities

Desouza, K. C., Dawsona, G. S. y Chenok, D. (2020). Designing, developing, and deploying artificial intelligence systems: Lessons from and for the public sector. Business Horizons, 63(2), 205-213. https://doi.org/10.1016/j.bushor.2019.11.004

Eizaguirre, S. y Pares, M. (2019). Communities making social change from below. Social innovation and democratic leadership in two disenfranchised neighbourhoods in Barcelona. Urban Research & Practice, 12(2), 173-191. https://doi.org/10.1080/17535069.2018.1426782

Galliers, R. D., Newell, S., Shanks, G. y Topi, H. (2017). Datification and its human, organizational and societal effects: the strategic opportunities and challenges of algorithmic decision-making. Journal of Information Systems, 26(3), 185-190. https://doi.org/10.1016/j.jsis.2017.08.002

Gerbert, P., Hecker, M., Steinhäuser, S. y Ruwolt, P. (2017). Putting artificial intelligence to work. BCG Henderson Institute. Consultado el 4 de agosto de 2020. https://www.bcg.com/de-de/publications/2017/technologydigital-strategy-putting-artificial-intelligence-work.aspx

Gonzalez-Zapata, F. y Heeks, R. (2015). The multiple meanings of open government data: Understanding different stakeholders and their perspectives. Government Information Quarterly, 32(4), 441-452. https://doi.org/10.1016/j.giq.2015.09.001

Grosz, B. J., Mackworth, A., Altman, R., Horvitz, E., Mitchell, T., Mulligan, D. y Shoham, Y. (2016). Artificial intelligence and life in 2030: One hundred years’ study on artificial intelligence. Stanford University. Consultado del 4 de agosto de 2020. https://ai100.stanford.edu/sites/default/files/ai_100_report_0831fnl.pdf

Guirguis, K. (2020). From Big Data to Big Performance – Exploring the Potential of Big Data for Enhancing Public Organizations’ Performance. A Systematic Literature Review. Swiss Yearbook of Administrative Sciences, 11(1), 55-65. https://doi.org/10.5334/ssas.140

Jones, M. (2019). What we talk about when we talk about (big) data. The Journal of Strategic Information Systems, 28(1), 3-16. https://doi.org/10.1016/j.jsis.2018.10.005

Intel·ligència artificial: decisions automatitzades a Catalunya (2020). Barcelona: APDCAT - Generalitat de Catalunya. Consultado el 4 de agosto de 2020. https://apdcat.gencat.cat/web/.content/04-actualitat/noticies/documents/INFORME-INTELLIGENCIA-ARTIFICIAL-FINAL-WEB-OK.pdf

Keding, C. (2020). Understanding the interplay of artificial intelligence and strategic management: four decades of research in review. Management Review Quarterly, 71, 91-134. https://doi.org/10.1007/s11301-020-00181-x.

Khatri, V. y Brown, C. V. (2010). Designing Data Governance. Communications of the ACM, 53(1), 148-152. https://doi.org/10.1145/1629175.1629210

Kim, G. H., Trimi, S. y Chung, J. H. (2014). Big Data Applications in the Government Sector: A Comparative Analysis among Leading Countries. Communications of the ACM, 57(3), 78-85. https://doi.org/10.1145/2500873

Loebbecke, C. y Picot, A. (2015). Reflections on Societal and Business Model Transformation Arising from Digitization and Big Data Analytics: A Research Agenda. The Journal of Strategic Information Systems, 24(3), 149-157. https://doi.org/10.1016/j.jsis.2015.08.002

Luckin, R., Holmes, W., Griffiths, M. y Forcier, L. B. (2016). Intelligence Unleashed: An argument for AI in Education. Pearson Education. https://www.pearson.com/content/dam/corporate/global/pearson-dot-com/files/innovation/Intelligence-Unleashed-Publication.pdf

Magro, R. (2020). La Oficina del Dato, El Consultor de los Ayuntamientos (Sección A Fondo), III, 99-110.

Markus, M. L. (2017). Datification, Organizational Strategy, and IS Research: What’s the Score? The Journal of Strategic Information Systems, 26(3), 233-241. https://doi.org/10.1016/j.jsis.2017.08.003

Mehr, H. (agosto de 2017). Artificial intelligence for citizen services and government. Harvard Kennedy School, Ash Center for Democratic Governance and Innovation. Consultado el 4 de agosto de 2020. https://ash.harvard.edu/files/ash/files/artificial_intelligence_for_citizen_services.pdf

Hult, M. y Lennung, S. Å. (1980). Towards a definition of action research: a note and bibliography. Journal of Management Studies, 17(2), 241-250. https://doi.org/10.1111/j.1467-6486.1980.tb00087.x

Huxham, C. y Vangen, S. (2003). Researching organizational practice through action research: case studies and design choices. Organizational Research Methods, 6(3), 383-403. https://doi.org/10.1177/1094428103254454

March, H. y Ribera-Fumaz, R. (2018). Barcelona: from corporate smart city to technological sovereignty. En A. Karvonen, F. Cugurullo y F. Caprotti (eds). Inside Smart Cities: Place, Politics and Urban Innovation (págs. 227-242). Routledge. https://doi.org/10.4324/9781351166201-15

Newell, S. y Marabelli, M. (2015). Strategic opportunities (and challenges) of algorithmic decision-making: a call for action on the long-term societal effects of «Datification». Journal of Strategic Information Systems, 24(1), 3-14. https://doi.org/10.1016/j.jsis.2015.02.001

Nikitas, A., Michalakopoulou, K., Njoya, E. T. y Karampatzakis, D. (2020). Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era. Sustainability, 12, 1-19. https://doi.org/10.3390/su12072789

Otto, B. (2011a). A morphology of the organization of data governance. European Conference on Information Systems (ECIS 2011 Proceedings, 272). Association for Information Systems (AIS). https://aisel.aisnet.org/ecis2011/272

Otto, B. (2011b). Organizing Data Governance: Findings from the Telecommunications Industry and Consequences for Large Service Providers. Communications of the Association for Information Systems, 29, 45-66 (artículo 3). https://doi.org/10.17705/1cais.02903

Pencheva, I., Esteve, M. y Jankin Mikhaylov, S. (2020). Big Data and AI – A transformational shift for government: So, what next for research? Public Policy and Administration, 35(1), 24-44. https://doi.org/10.1177/0952076718780537

Pique, J. M., Miralles, F. y Berbegal-Mirabent, J. (2019). Areas of innovation in cities: the evolution of 22@Barcelona. International Journal of Knowledge-Based Development, 10(1), 3-25. https://doi.org/10.1504/ijkbd.2019.10019576

Qian Sun, T. y Medaglia, R. (2019). Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly, 36(2), 368-383. https://doi.org/10.1016/j.giq.2018.09.008

Ramió, C. (2019). Inteligencia artificial y Administración pública. Robots y humanos compartiendo el servicio público. Catarata.

Ramió, C. (2018). El impacto de la inteligencia artificial y de la robótica en el empleo público. GIGAPP Estudios Working Papers, 5(98-110), 401-421. http://www.gigapp.org/ewp/index.php/GIGAPP-EWP/article/view/115

Ramió, C. y Salvador, M. (2019). Gobernanza social e inteligente. Una nueva organización para el Ayuntamiento de Barcelona. Ajuntament de Barcelona. https://ajuntament.barcelona.cat/barcelonallibres/sites/default/files/publicacions_fitxers/pdf_gobernanza_indexat_cast.pdf

Weber, K., Otto, B. y Österle, H. (2009). One Size Does Not Fit All. A Contingency Approach to Data Governance. Journal of Data and Information Quality, 1(1), 1-26. https://doi.org/10.1145/1515693.1515696

Wiseman, J. M. (2018). Data-Driven Government: The Role of Chief Data Officers. IBM Center for the Business of Government. http://www.businessofgovernment.org/sites/default/files/Data-Driven%20Government_0.pdf

Wirtz, B. W., Weyerer, J. C. y Geyer, C. (2019). Artificial Intelligence and the Public Sector – Applications and Challenges. International Journal of Public Administration, 42(7), 596-615. https://doi.org/10.1080/01900692.2018.1498103

Yin, R. K. (2018). Case study research and applications: design and methods. SAGE.

Published

01-07-2021

How to Cite

Salvador Serna, M. (2021). Artificial intelligence and data governance in public administration: reflections and evidence for its development. Gestión Y Análisis De Políticas Públicas, (26), 20–32. https://doi.org/10.24965/gapp.i26.10855